spinifex: An R Package for Creating a Manual Tour of Low-dimensional Projections of Multivariate Data
نویسندگان
چکیده
منابع مشابه
tourr: An R package for exploring multivariate data with projections
This paper describes an R package which produces tours of multivariate data. The package includes functions for creating different types of tours, including grand, guided, and little tours, which project multivariate data (p-D) down to 1, 2, 3, or, more generally, d (≤ p) dimensions. The projected data can be rendered as densities or histograms, scatterplots, anaglyphs, glyphs, scatterplot matr...
متن کاملManual Controls For High-Dimensional Data Projections
Projections of high-dimensional data onto low-dimensional subspaces provide insightful views for understanding multivariate relationships. In this paper we discuss how to manually control the variable contributions to the projection. The user has control of the way a particular variable contributes to the viewed projection and can interactively adjust the variable's contribution. These manual c...
متن کاملan application of fuzzy logic for car insurance underwriting
در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...
micompr: An R Package for Multivariate Independent Comparison of Observations
The micompr R package implements a procedure for comparing multivariate samples associated with different groups. The procedure uses principal component analysis to convert multivariate observations into a set of linearly uncorrelated statistical measures, which are then compared using a number of statistical methods. This technique is independent of the distributional properties of samples and...
متن کاملManual for the R gaga package
Here we illustrate several uses of the package gaga, including simulation, differential expression analysis, class prediction and sample size calculations. In Section 1 we review the GaGa and MiGaGa models. In Section 2 we simulate gene expression data, which we use to fit the GaGa model in Section 3. Diagnostics for model goodness-of-fit are presented in Section 4. Section 5 shows how to find ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The R Journal
سال: 2020
ISSN: 2073-4859
DOI: 10.32614/rj-2020-027